Spectroscopic photoacoustic imaging of cartilage damage

M Wu, B C J van Teeffelen, K Ito, F N van de Vosse, R P A Janssen, C C van Donkelaar, R G P Lopata

Published: July 2021

Objective Osteoarthritis (OA) is a chronic joint disease characterized by progressive degradation of cartilage. It affects more than 10% of the people aged over 60 years-old worldwide with a rising prevalence due to the increasingly aging population. OA is a major source of pain, disability, and socioeconomic cost. Currently, the lack of effective diagnosis and affordable imaging options for early detection and monitoring of OA presents the clinic with many challenges. Spectroscopic Photoacoustic (sPA) imaging has the potential to reveal changes in cartilage composition with different degrees of damage, based on optical absorption contrast. Design In this study, the capabilities of sPA imaging and its potential to characterize cartilage damage were explored. To this end, 15 pieces of cartilage samples from patients undergoing a total joint replacement were collected and were imaged ex vivo with sPA imaging at a wide optical spectral range (between 500 nm and 1,300 nm) to investigate the photoacoustic properties of cartilage tissue. All the PA spectra of the cartilage samples were analyzed and compared to the corresponding histological results. Results The collagen related PA spectral changes were clearly visible in our imaging data and were related to different degrees of cartilage damage. The results are in good agreement with histology and the current gold standard, i.e., the Mankin score. Conclusions This study demonstrates the potential and possible clinical application of sPA imaging in OA.

Full Access Link: Osteoarthritis and Cartilage