Quantitative Translation of Microfluidic Transporter in Vitro Data to in Vivo Reveals Impaired Albumin-Facilitated Indoxyl Sulfate Secretion in Chronic Kidney Disease

Thomas K. van der Made, Michele Fedecostante, Daniel Scotcher, Amin Rostami-Hodjegan, Javier Sastre Toraño, Igor Middel, Andries S. Koster, Karin G. Gerritsen, Vera Jankowski, Joachim Jankowski, Joost G. J. Hoenderop, Rosalinde Masereeuw, and Aleksandra Galetin

Published: 04/11/2019


Indoxyl sulfate (IxS), a highly albumin-bound uremic solute, accumulates in chronic kidney disease (CKD) due to reduced renal clearance. This study was designed to specifically investigate the role of human serum albumin (HSA) in IxS renal secretion via organic anion transporter 1 (OAT1) in a microfluidic system and subsequently apply quantitative translation of in vitro data to predict extent of change in IxS renal clearance in CKD stage IV relative to healthy. Conditionally immortalized human proximal tubule epithelial cells overexpressing OAT1 were incubated with IxS (5-200 μM) in the HSA-free medium or in the presence of either HSA or CKD-modified HSA. IxS uptake in the presence of HSA resulted in more than 20-fold decrease in OAT1 affinity (Km,u) and 37-fold greater in vitro unbound intrinsic clearance (CLint,u) versus albumin-free condition. In the presence of CKD-modified albumin, Km,u increased four-fold and IxS CLint,u decreased almost seven-fold relative to HSA. Fold-change in parameters exceeded differences in IxS binding between albumin conditions, indicating additional mechanism and facilitating role of albumin in IxS OAT1-mediated uptake. Quantitative translation of IxS in vitro OAT1-mediated CLint,u predicted a 60% decrease in IxS renal elimination as a result of CKD, in agreement with the observed data (80%). The findings of the current study emphasize the role of albumin in IxS transport via OAT1 and explored the impact of modifications in albumin on renal excretion via active secretion in CKD. For the first time, this study performed quantitative translation of transporter kinetic data generated in a novel microfluidic in vitro system to a clinically relevant setting. Knowledge gaps and future directions in quantitative translation of renal drug disposition from microphysiological systems are discussed.

Full Access Link: Molecular Pharmaceutics