Article
Osteoinductive calcium phosphate with submicron topography as bone graft substitute for maxillary sinus floor augmentation: A translational study
Published: 2023
Abstract
Objectives
The aim of this study was the preclinical and clinical evaluation of osteoinductive calcium phosphate with submicron surface topography as a bone graft substitute for maxillary sinus floor augmentation (MSFA).
Material and Methods
A preclinical sheep model of MSFA was used to compare a calcium phosphate with submicron needle-shaped topography (BCPN, MagnetOs Granules, Kuros Biosciences BV) to a calcium phosphate with submicron grain-shaped topography (BCPG) and autologous bone graft (ABG) as controls. Secondly, a 10-patient, prospective, randomized, controlled trial was performed to compare BCPN to ABG in MSFA with two-stage implant placement.
Results
The pre-clinical study demonstrated that both BCPN and BCPG were highly biocompatible, supported bony ingrowth with direct bone apposition against the material, and exhibited bone formation as early as 3 weeks post-implantation. However, BCPN demonstrated significantly more bone formation than BCPG at the study endpoint of 12 weeks. Only BCPN reached an equivalent amount of bone formation in the available space and a greater proportion of calcified material (bone + graft material) in the maxillary sinus compared to the “gold standard” ABG after 12 weeks. These results were validated in a small prospective clinical study, in which BCPN was found comparable to ABG in implant stability, bone height, new bone formation in trephine core biopsies, and overall clinical outcome.
Conclusion
This translational work demonstrates that osteoinductive calcium phosphates are promising bone graft substitutes for MSFA, whereas their bone-forming potential depends on the design of their surface features.
Full Access Link: Clinical Oral Implants Research