Fresh Osteochondral Allograft Transplantation in the Knee: A Viability and Histologic Analysis for Optimizing Graft Viability and Expanding Existing Standard Processed Graft Resources Using a Living Donor Cartilage Program

Mario Hevesi, Janet M. Denbeigh, Carlo A. Paggi, Catalina Galeano-Garces, Leila Bagheri, A. Noelle Larson, Michael J. Stuart, Daniel B. F. Saris, Andre J. van Wijnen, Aaron J. Krych

Published: 01/01/2019


Objective: This study aims to (1) determine and validate living cartilage allograft transplantation as a novel source for viable osteochondral allograft (OCA) tissues and (2) perform histologic and viability comparisons of living donor cartilage tissues to currently available clinical-grade standard processed grafts.

Design: Using healthy cartilage from well-preserved contralateral compartments in 27 patients undergoing total knee arthroplasty (TKA) and 10 clinical-grade OCA specimens obtained immediately following operative implantation, standard and living donor OCA quality was evaluated at the time of harvest and following up to 3 weeks of storage on the basis of macroscopic International Cartilage Repair Society grade, histology, and viability.

Results: Osteochondral samples demonstrated a consistent decrease in viability and histologic quality over the first 3 weeks of storage at 37°C, supporting the utility of an OCA paradigm shift toward early implantation, as was the clinical standard up until recent adoption of transplantation at 14 to 35 days following donor procurement. Samples from the 10 clinical-grade OCAs, implanted at an average of 23 days following graft harvest demonstrated a mean viable cell density of 45.6% at implantation, significantly lower (P < 0.01) than the 93.6% viability observed in living donor allograft tissues.

Conclusions: Osteochondral tissue viability and histologic quality progressively decreases with ex vivo storage, even when kept at physiologic temperatures. Currently available clinical OCAs are stored for 2 to 5 weeks prior to implantation and demonstrate inferior viability to that of fresh osteochondral tissues that can be made available through the use of a living donor cartilage program.

Full Access Link: Cartilage