Dual Electrospun Supramolecular Polymer Systems for Selective Cell Migration

Shraddha H. Thakkar Andrea Di Luca Sabrina Zaccaria Frank P. T. Baaijens Carlijn V. C. Bouten Patricia Y. W. Dankers

Published: 01/07/2018


Dual electrospinning can be used to make multifunctional scaffolds for regenerative medicine applications. Here, two supramolecular polymers with different material properties are electrospun simultaneously to create a multifibrous mesh. Bisurea (BU)‐based polycaprolactone, an elastomer providing strength to the mesh, and ureido‐pyrimidinone (UPy) modified poly(ethylene glycol) (PEG), a hydrogelator, introducing the capacity to deliver compounds upon swelling. The dual spun scaffolds are modularly tuned by mixing UPyPEG hydrogelators with different polymer lengths, to control swelling of the hydrogel fiber, while maintaining the mechanical properties of the scaffold. Stromal cell derived factor 1 alpha (SDF1α) peptides are embedded in the UPyPEG fibers. The swelling and erosion of UPyPEG increase void spaces and released the SDF1α peptide. The functionalized scaffolds demonstrate preferential lymphocyte recruitment proposed to be created by a gradient formed by the released SDF1α peptide. This delivery approach offers the potential to develop multifibrous scaffolds with various functions.

Full Access Link: Macromolecular Bioscience