Cucurbit-Like Polymersomes with Aggregation-Induced Emission Properties Show Enzyme-Mediated Motility

Shoupeng Cao, Hanglong Wu, Imke A. B. Pijpers, Jingxin Shao, Loai K. E. A. Abdelmohsen, David S. Williams, and Jan C. M. van Hest

Published: 2021


Polymersomes that incorporate aggregation-induced emission (AIE) moieties are attractive inherently fluorescent nanoparticles with biomedical application potential for cell/tissue imaging and tracking, as well as phototherapeutics. An intriguing feature that has not been explored yet is their ability to adopt a range of asymmetric morphologies. Structural asymmetry allows nanoparticles to be exploited as active (motile) systems. Here, we present the design and preparation of AIE fluorophore integrated (AIEgenic) cucurbit-shaped polymersome nanomotors with enzyme-powered motility. The cucurbit scaffold was constructed via morphology engineering of biodegradable fluorescent AIE-polymersomes, followed by functionalization with enzymatic machinery via a layer-by-layer (LBL) self-assembly process. Because of the enzyme-mediated decomposition of chemical fuel on the cucurbit-like nanomotor surface, enhanced directed motion was attained, when compared with the spherical counterparts. These cucurbit-shaped biodegradable AIE-nanomotors provide a promising platform for the development of active delivery systems with potential for biomedical applications.

Full Access Link: ACS Nano